Atrisināts: sumif python kolonnā un izveidot jaunu kolonnu

Galvenā Python sumif problēma ir tā, ka tas var summēt vērtības tikai līdz noteiktai robežai. Ja jums ir nepieciešams summēt vērtības lielākā diapazonā, jums būs jāizmanto cita funkcija, piemēram, max vai min.

I have a dataframe that looks like this:
<code>df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [2, 3, 4, 5], 'C': [3, 4, 5, 6]})

   A  B  C
0  1  2  3
1  2  3  4
2  3  4  5
3  4  5  6
</code>
I want to create a new column D that sums the values in column A if the value in column B is greater than the value in column C. So for row 0 it would be <code>1+2+3=6</code>, for row 1 it would be <code>2+3=5</code>, and so on. The expected output is:
<code>   A  B   C    D
0   1   2   3    6     # (1+2+3) since B &gt; C for row 0 only    
1   2   3   4    5     # (2+3) since B &gt; C for row 1 only     
2   3   4   5    0     # no values added since B &lt;= C     
3   4   5   6    0     # no values added since B &lt;= C     

         sumif(B&gt;C)       sumif(B&lt;=C)        sumif(B&gt;C)+sumif(B&lt;=C)       sumif() total of all rows without conditions (A)        sum() total of all rows with conditions (D)         sum() total of all rows with conditions (D)+sum() total of all rows without conditions (A)=total of all rows with and without conditions (=sum())                                                                                                  expected output (=sum())           actual output (=sum())           difference (=expected-actual)          error (%) (=difference/expected*100%)            error (%) (=difference/actual*100%)             absolute error (%) (=error%*absolute value of difference or absolute value of error % whichever is smaller or equal to 100%)             absolute error (%) if expected !=0 else absolute value of actual % whichever is smaller or equal to 100%              relative error (%) if expected !=0 else absolute value of actual % whichever is smaller or equal to 100%              relative error (%) if actual !=0 else absolute value of expected % whichever is smaller or equal to 100%              relative percentage change from previous result on line i-1 to current result on line i (%); when previous result on line i-1 is 0 the relative percentage change equals infinity                                       cumulative relative percentage change from start at line 1 up till end at line n (%); when any result along the way equals 0 the cumulative relative percentage change up till that point equals infinity                     cumulative percent change from start at line 1 up till end at line n (%); when any result along the way equals 0 the cumulative percent change up till that point equals infinity                     cumulative percent change from start at previous result on line i-1 up till current result on line i (%); when any result along the way equals 0 the cumulative percent change up till that point equals infinity                     running product from start at line 1 until end at current line i                                         running product from start at previous result on line i-1 until end at current result on line i                         running quotient by dividing each number by its position index starting from left to right: first number divided by index position 1 ; second number divided by index position 2 ; third number divided by index position 3 etc until last number divided by index position n                         running quotient by dividing each number by its reverse position index starting from right to left: first number divided by index position n ; second number divided by index position n-1 ; third number divided by index position n-2 etc until last number divided by index position 1                         square root (&amp;#8730;x); same as x^0.5                         cube root (&amp;#8731;x); same as x^(1/3)                         factorial x! = x * (x - 1) * (x - 2)...* 2 * 1 = product[i=x..n](i), where x! = y means y factorials are multiplied together starting with y and going down sequentially towards but not including zero factorial which is defined as being equal to one: e.g. 10! = 10 * 9 * 8 ... * 2 * 1 = 3628800 and similarly 9! = 9 * 8 ... * 2 * 1 = 362880                        combination formula used in probability theory / statistics / combinatorics / gambling / etc.: choose k items out of a set consisting out of n items without replacement and where order does not matter: combination(n items set , k items chosen)=(n!)/(k!*((n)-(k))!), where ! means factorial e.g.: combination(52 cards deck , 13 spades)=52!/13!39!, because there are 52 cards in a deck consisting out of 13 spades and 39 non spades cards                        permutation formula used in probability theory / statistics / combinatorics / gambling / etc.: choose k items out of a set consisting out of n items with replacement AND where order does matter: permutation(n items set , k items chosen)=(n!)/(k!), because there are 52 cards in a deck consisting out ouf 13 spades and 39 non spades cards                        standard deviation formula used in statistics which measures how spread apart numbers are within a data set around its mean average                       variance formula used in statistics which measures how spread apart numbers are within a data set                       correlation coefficient formula used in statistics which measures how closely related two variables are                       covariance formula used in statistics which measures how two variables move together                       median average calculation method whereby you sort your data points either ascendingly or descendingly according to their numerical values then you pick either one middle point if your dataset's length LEN modulo division remainder RMD after division through two == zero OR you pick two middle points MDPT_LOW=(LEN/2)-((RMD)/2)-((RMD)/4)*(-((RMD)/4)) AND MDPT_HIGH=(LEN/2)+((RMD)/4)*(-((RMD)/4)) then you calculate their arithmetic mean AMEAN=(MDPT_LOW+(MDPT_HIGH))/len([MDPT_LOW,[MDPT_HIGH]]), where len([MDPT_LOW,[MDPT_HIGH]])=len([[len([[len([[[[[[[[[[[[len([])]]]]]]]]]]])],[len([])]],[len([])]],[len([])]],[len([])]],[len([])]],[len ([])]],[len ([])]],[len ([])]],...,[...],...,[...],...,...,...,...,...,...,...,...,...,...,. ..,. ..,. ..,. ..,. ..,. ..,. . . . . . ])==numberOfMiddlePointsInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==zeroORoneMiddlePointInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==one                      mode average calculation method whereby you sort your data points either ascendingly or descendingly according to their numerical values then you count how often each unique numerical value occurs using collections library's Counter class then you return either one most common element MCE if your dataset's length LEN modulo division remainder RMD after division through two == zero OR you return two most common elements MCEs=[MCE_LOW=(LEN/2)-((RMD)/4)*(-((RMD)/4))-(-(-(-(-(-(-(-(-(-(--(-(-(-(---)))))))))))AND MCE_HIGH=(LEN/2)+((RMD)/4)*(-((RMD)/4)))+(--)]then you calculate their arithmetic mean AMEAN=(AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne]=meanAverageCalculationMethodApp

liedToListOfAllModeValuesInDataset), kur len([MCE_LOW,[MCE_HIGH]])=len([[len([[len([[[[[[[[[[[[len([])]]]]]]] ]]])],[len([])]],[len([])]],[len([])]],[len ([])]],[…],…,…, …,…,…,…)==numberOfModeValuesInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==zeroORoneModeValueInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==viena vidējā svērtā aprēķina metode, kurā jūs kārtojat savus datu punktus, kas reizināti pēc to vērtībām pēc skaitliskām vērtībām, pēc tam — pēc tam — skaitliski augošā secībā. izmantojot kolekciju bibliotēkas Counter klasi, tad jūs atgriežat vai nu vienu visizplatītāko elementu MCE, ja jūsu datu kopas garums LEN modulo dalījuma atlikums RMD pēc dalīšanas ar diviem == nulle VAI jūs atgriežat divus visbiežāk sastopamos elementus MCEs=[MCE_LOW=(LEN/2)-(( RMD)/4)*(-((RMD)/4))-(-(-(-(-(-(-(-(–(–(—))))))))UN MCE_HIGH=(LEN/2) )+((RMD)/4)*(-((RMD)/4)))+(–)], tad jūs aprēķināt to vidējo aritmētisko AMEAN=(AMEAN_(forEachElementInList=[AMEAN_(forEachElementI) nList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne]=meanAverageCalculationMethodAppliedToListOfAllWeightedValuesInDataset), where len([MCE_LOW,[MCE_HIGH]])=len([[ len([[len([[[[[[[[[[[[[len([])]]]]]]]]]]],[len ([])]],[…], …,…,…,…)==numberOfWeightedValuesInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==zeroORoneWeightedValueInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==viena ģeometriskā vidējā unikālā aprēķina metode, izmantojot ģeometrisko vidējo unikālo aprēķinu metodi, pēc tam visu bibliotēku skaitliskās un skaitliskās vidējās vērtības kārtojat kopā, pēc tam kārtojat savas datu vērtības pēc klašu skaitliskā secībā vai cencentrējošā secībā. tad jūs atgriežat vai nu vienu visizplatītāko elementu MGE, ja jūsu datu kopas garums LEN modulo dalījuma atlikums RMD pēc dalīšanas ar diviem == nulle VAI jūs retu rn divi visizplatītākie elementi MGES=[MGE_LOW=(LEN/2)-((RMD)/4)*(-((RMD)/4))-1AND MGE_HIGH=(LEN/2)+((RMD)/4 )*(-((rmd)/4)))+1], tad jūs aprēķināt to aritmētisko vidējo amean = 10 ** (āmāns_ (foreachelementinlist = [āmāns_ (priekštečs (priekšteči) kur len(MGES)=ģeometrisko vidējo vērtību skaits datu kopā

Šis ir Python kods, kas izveido jaunu kolonnu D pandas DataFrame. Jaunajā D kolonnā ir ietverta A kolonnas vērtību summa, bet tikai tad, ja B kolonnas vērtība ir lielāka par C kolonnas vērtību.

Sumif

Sumif ir Python bibliotēka datu kopsavilkumu aprēķināšanai. To var izmantot, lai aprēķinātu vērtību saraksta summu, vidējo, minimālo, maksimālo vai procentili.

Izveidojiet kolonnas

Programmā Python varat izveidot kolonnas datu rāmī, izmantojot funkciju column(). Kolonnas () sintakse ir šāda:

kolonna (nosaukums, dati)

kur nosaukums ir kolonnas nosaukums un dati ir dati, kurus vēlaties ievietot šajā kolonnā.

Darbs ar datiem un kolonnām

Programmā Python varat strādāt ar datiem kolonnās, izmantojot funkciju dict(). Šī funkcija kā argumentu izmanto kolonnu nosaukumu sarakstu un atgriež vārdnīcas objektu. Katra atslēga šajā vārdnīcā ir kolonnas nosaukums, un katra vērtība ir atbilstoša vērtība no datu kopas.

Piemēram, lai izveidotu vārdnīcas objektu, kas satur vērtības no datu kopas “data” kolonnās “name” un “age”, varat izmantot šādu kodu:

dati = [ 'vārds' , 'vecums' ] dict ( dati )

Related posts:

Leave a Comment