Išspręsta: sumif python stulpelyje ir sukurti naują stulpelį

Pagrindinė Python sumif problema yra ta, kad jis gali sumuoti reikšmes tik iki tam tikros ribos. Jei reikia susumuoti reikšmes didesniame diapazone, turėsite naudoti kitą funkciją, pvz., maks. arba min.

I have a dataframe that looks like this:
<code>df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [2, 3, 4, 5], 'C': [3, 4, 5, 6]})

   A  B  C
0  1  2  3
1  2  3  4
2  3  4  5
3  4  5  6
</code>
I want to create a new column D that sums the values in column A if the value in column B is greater than the value in column C. So for row 0 it would be <code>1+2+3=6</code>, for row 1 it would be <code>2+3=5</code>, and so on. The expected output is:
<code>   A  B   C    D
0   1   2   3    6     # (1+2+3) since B &gt; C for row 0 only    
1   2   3   4    5     # (2+3) since B &gt; C for row 1 only     
2   3   4   5    0     # no values added since B &lt;= C     
3   4   5   6    0     # no values added since B &lt;= C     

         sumif(B&gt;C)       sumif(B&lt;=C)        sumif(B&gt;C)+sumif(B&lt;=C)       sumif() total of all rows without conditions (A)        sum() total of all rows with conditions (D)         sum() total of all rows with conditions (D)+sum() total of all rows without conditions (A)=total of all rows with and without conditions (=sum())                                                                                                  expected output (=sum())           actual output (=sum())           difference (=expected-actual)          error (%) (=difference/expected*100%)            error (%) (=difference/actual*100%)             absolute error (%) (=error%*absolute value of difference or absolute value of error % whichever is smaller or equal to 100%)             absolute error (%) if expected !=0 else absolute value of actual % whichever is smaller or equal to 100%              relative error (%) if expected !=0 else absolute value of actual % whichever is smaller or equal to 100%              relative error (%) if actual !=0 else absolute value of expected % whichever is smaller or equal to 100%              relative percentage change from previous result on line i-1 to current result on line i (%); when previous result on line i-1 is 0 the relative percentage change equals infinity                                       cumulative relative percentage change from start at line 1 up till end at line n (%); when any result along the way equals 0 the cumulative relative percentage change up till that point equals infinity                     cumulative percent change from start at line 1 up till end at line n (%); when any result along the way equals 0 the cumulative percent change up till that point equals infinity                     cumulative percent change from start at previous result on line i-1 up till current result on line i (%); when any result along the way equals 0 the cumulative percent change up till that point equals infinity                     running product from start at line 1 until end at current line i                                         running product from start at previous result on line i-1 until end at current result on line i                         running quotient by dividing each number by its position index starting from left to right: first number divided by index position 1 ; second number divided by index position 2 ; third number divided by index position 3 etc until last number divided by index position n                         running quotient by dividing each number by its reverse position index starting from right to left: first number divided by index position n ; second number divided by index position n-1 ; third number divided by index position n-2 etc until last number divided by index position 1                         square root (&amp;#8730;x); same as x^0.5                         cube root (&amp;#8731;x); same as x^(1/3)                         factorial x! = x * (x - 1) * (x - 2)...* 2 * 1 = product[i=x..n](i), where x! = y means y factorials are multiplied together starting with y and going down sequentially towards but not including zero factorial which is defined as being equal to one: e.g. 10! = 10 * 9 * 8 ... * 2 * 1 = 3628800 and similarly 9! = 9 * 8 ... * 2 * 1 = 362880                        combination formula used in probability theory / statistics / combinatorics / gambling / etc.: choose k items out of a set consisting out of n items without replacement and where order does not matter: combination(n items set , k items chosen)=(n!)/(k!*((n)-(k))!), where ! means factorial e.g.: combination(52 cards deck , 13 spades)=52!/13!39!, because there are 52 cards in a deck consisting out of 13 spades and 39 non spades cards                        permutation formula used in probability theory / statistics / combinatorics / gambling / etc.: choose k items out of a set consisting out of n items with replacement AND where order does matter: permutation(n items set , k items chosen)=(n!)/(k!), because there are 52 cards in a deck consisting out ouf 13 spades and 39 non spades cards                        standard deviation formula used in statistics which measures how spread apart numbers are within a data set around its mean average                       variance formula used in statistics which measures how spread apart numbers are within a data set                       correlation coefficient formula used in statistics which measures how closely related two variables are                       covariance formula used in statistics which measures how two variables move together                       median average calculation method whereby you sort your data points either ascendingly or descendingly according to their numerical values then you pick either one middle point if your dataset's length LEN modulo division remainder RMD after division through two == zero OR you pick two middle points MDPT_LOW=(LEN/2)-((RMD)/2)-((RMD)/4)*(-((RMD)/4)) AND MDPT_HIGH=(LEN/2)+((RMD)/4)*(-((RMD)/4)) then you calculate their arithmetic mean AMEAN=(MDPT_LOW+(MDPT_HIGH))/len([MDPT_LOW,[MDPT_HIGH]]), where len([MDPT_LOW,[MDPT_HIGH]])=len([[len([[len([[[[[[[[[[[[len([])]]]]]]]]]]])],[len([])]],[len([])]],[len([])]],[len([])]],[len([])]],[len ([])]],[len ([])]],[len ([])]],...,[...],...,[...],...,...,...,...,...,...,...,...,...,...,. ..,. ..,. ..,. ..,. ..,. ..,. . . . . . ])==numberOfMiddlePointsInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==zeroORoneMiddlePointInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==one                      mode average calculation method whereby you sort your data points either ascendingly or descendingly according to their numerical values then you count how often each unique numerical value occurs using collections library's Counter class then you return either one most common element MCE if your dataset's length LEN modulo division remainder RMD after division through two == zero OR you return two most common elements MCEs=[MCE_LOW=(LEN/2)-((RMD)/4)*(-((RMD)/4))-(-(-(-(-(-(-(-(-(-(--(-(-(-(---)))))))))))AND MCE_HIGH=(LEN/2)+((RMD)/4)*(-((RMD)/4)))+(--)]then you calculate their arithmetic mean AMEAN=(AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne]=meanAverageCalculationMethodApp

liedToListOfAllModeValuesInDataset), kur len([MCE_LOW,[MCE_HIGH]])=len([[len([[len([[[[[[[[[[[[len([])]]]]]]] ]]])],[len([])]],[len([])]],[len([])]],[len ([])]],[...],…,…, …,…,…,…)==numberOfModeValuesInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==zeroORoneModeValueInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==vienas svertinis vidurkis, unikalus skaičiavimo metodas, pagal kurį rūšiuojate savo duomenų taškus, pakartodami jų skaičių pagal skaičių vertes, tada rūšiuojate savo duomenų reikšmes skaitine tvarka arba didėjančia tvarka. naudodami kolekcijų bibliotekos skaitiklio klasę, grąžinate vieną dažniausiai pasitaikantį elementą MCE, jei duomenų rinkinio ilgio LEN modulio padalijimo liekana RMD po padalijimo iš dviejų == nulis ARBA pateikiate du dažniausiai pasitaikančius elementus MCEs=[MCE_LOW=(LEN/2)-(( RMD)/4)*(-((RMD)/4))-(-(-(-(-(-(-(-(–(–(-))))))))IR MCE_HIGH=(LEN/2) )+((RMD)/4)*(-((RMD)/4)))+(–)] tada apskaičiuokite jų aritmetinį vidurkį AMEAN=(AMEAN_(forEachElementInList=[AMEAN_(forEachElementI) nList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne]=meanAverageCalculationMethodAppliedToListOfAllWeightedValuesInDataset), where len([MCE_LOW,[MCE_HIGH]])=len([[ len([[len([[[[[[[[[[[[[len([])]]]]]]]]]]],[len ([])]],[…], …,…,…,…)==numberOfWeightedValuesInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==zeroORoneWeightedValueInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==vienas suskaičiuojamas unikalus geometrinis vidurkis, naudojant visas bibliotekų skaitines skaitines reikšmes, tada surūšiuojate savo duomenų reikšmes pagal klases arba centrinius duomenų taškus. tada grąžinate vieną dažniausiai pasitaikantį elementą MGE, jei duomenų rinkinio ilgio LEN modulio padalijimo liekana RMD po padalijimo iš dviejų == nulis ARBA grąžinate rn du dažniausiai pasitaikantys elementai MGES=[MGE_LOW=(LEN/2)-((RMD)/4)*(-((RMD)/4))-1AND MGE_HIGH=(LEN/2)+((RMD)/4 )*(-((RMD)/4)))+1]then you calculate their arithmetic mean AMEAN=10**(AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne]=meanAverageCalculationMethodAppliedToLogarithmicallyTransformedListOfGeometricMeans)), kur len(MGES) = geometrinių vidurkių skaičius duomenų rinkinyje

Tai yra Python kodas, sukuriantis naują stulpelį D pandos duomenų rėmelyje. Naujame D stulpelyje yra A stulpelio reikšmių suma, bet tik tuo atveju, jei B stulpelio reikšmė yra didesnė už C stulpelio vertę.

Sumif

Sumif yra Python biblioteka, skirta duomenų suvestinėms skaičiuoti. Jis gali būti naudojamas apskaičiuojant reikšmių sąrašo sumą, vidurkį, mažiausią, didžiausią arba procentilį.

Sukurti stulpelius

Python galite kurti stulpelius duomenų rėmelyje naudodami funkciją column (). Stulpelio () sintaksė yra tokia:

stulpelis (pavadinimas, duomenys)

kur pavadinimas yra stulpelio pavadinimas, o duomenys – duomenys, kuriuos norite įdėti į tą stulpelį.

Darbas su duomenimis ir stulpeliais

Python sistemoje galite dirbti su duomenimis stulpeliuose naudodami funkciją dict(). Ši funkcija kaip argumentą paima stulpelių pavadinimų sąrašą ir grąžina žodyno objektą. Kiekvienas šio žodyno raktas yra stulpelio pavadinimas, o kiekviena reikšmė yra atitinkama duomenų rinkinio reikšmė.

Pavyzdžiui, norėdami sukurti žodyno objektą, kuriame yra duomenų rinkinio „data“ reikšmės stulpeliuose „name“ ir „age“, galite naudoti šį kodą:

data = [ 'vardas' , 'amžius' ] diktas ( duomenys )

Susijusios naujienos:

Palikite komentarą