Resuelto: sumif en python en una columna y crea una nueva columna

El principal problema con sumif en Python es que solo puede sumar valores hasta cierto límite. Si necesita sumar valores en un rango mayor, deberá usar otra función como max o min.

I have a dataframe that looks like this:
<code>df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [2, 3, 4, 5], 'C': [3, 4, 5, 6]})

   A  B  C
0  1  2  3
1  2  3  4
2  3  4  5
3  4  5  6
</code>
I want to create a new column D that sums the values in column A if the value in column B is greater than the value in column C. So for row 0 it would be <code>1+2+3=6</code>, for row 1 it would be <code>2+3=5</code>, and so on. The expected output is:
<code>   A  B   C    D
0   1   2   3    6     # (1+2+3) since B &gt; C for row 0 only    
1   2   3   4    5     # (2+3) since B &gt; C for row 1 only     
2   3   4   5    0     # no values added since B &lt;= C     
3   4   5   6    0     # no values added since B &lt;= C     

         sumif(B&gt;C)       sumif(B&lt;=C)        sumif(B&gt;C)+sumif(B&lt;=C)       sumif() total of all rows without conditions (A)        sum() total of all rows with conditions (D)         sum() total of all rows with conditions (D)+sum() total of all rows without conditions (A)=total of all rows with and without conditions (=sum())                                                                                                  expected output (=sum())           actual output (=sum())           difference (=expected-actual)          error (%) (=difference/expected*100%)            error (%) (=difference/actual*100%)             absolute error (%) (=error%*absolute value of difference or absolute value of error % whichever is smaller or equal to 100%)             absolute error (%) if expected !=0 else absolute value of actual % whichever is smaller or equal to 100%              relative error (%) if expected !=0 else absolute value of actual % whichever is smaller or equal to 100%              relative error (%) if actual !=0 else absolute value of expected % whichever is smaller or equal to 100%              relative percentage change from previous result on line i-1 to current result on line i (%); when previous result on line i-1 is 0 the relative percentage change equals infinity                                       cumulative relative percentage change from start at line 1 up till end at line n (%); when any result along the way equals 0 the cumulative relative percentage change up till that point equals infinity                     cumulative percent change from start at line 1 up till end at line n (%); when any result along the way equals 0 the cumulative percent change up till that point equals infinity                     cumulative percent change from start at previous result on line i-1 up till current result on line i (%); when any result along the way equals 0 the cumulative percent change up till that point equals infinity                     running product from start at line 1 until end at current line i                                         running product from start at previous result on line i-1 until end at current result on line i                         running quotient by dividing each number by its position index starting from left to right: first number divided by index position 1 ; second number divided by index position 2 ; third number divided by index position 3 etc until last number divided by index position n                         running quotient by dividing each number by its reverse position index starting from right to left: first number divided by index position n ; second number divided by index position n-1 ; third number divided by index position n-2 etc until last number divided by index position 1                         square root (&amp;#8730;x); same as x^0.5                         cube root (&amp;#8731;x); same as x^(1/3)                         factorial x! = x * (x - 1) * (x - 2)...* 2 * 1 = product[i=x..n](i), where x! = y means y factorials are multiplied together starting with y and going down sequentially towards but not including zero factorial which is defined as being equal to one: e.g. 10! = 10 * 9 * 8 ... * 2 * 1 = 3628800 and similarly 9! = 9 * 8 ... * 2 * 1 = 362880                        combination formula used in probability theory / statistics / combinatorics / gambling / etc.: choose k items out of a set consisting out of n items without replacement and where order does not matter: combination(n items set , k items chosen)=(n!)/(k!*((n)-(k))!), where ! means factorial e.g.: combination(52 cards deck , 13 spades)=52!/13!39!, because there are 52 cards in a deck consisting out of 13 spades and 39 non spades cards                        permutation formula used in probability theory / statistics / combinatorics / gambling / etc.: choose k items out of a set consisting out of n items with replacement AND where order does matter: permutation(n items set , k items chosen)=(n!)/(k!), because there are 52 cards in a deck consisting out ouf 13 spades and 39 non spades cards                        standard deviation formula used in statistics which measures how spread apart numbers are within a data set around its mean average                       variance formula used in statistics which measures how spread apart numbers are within a data set                       correlation coefficient formula used in statistics which measures how closely related two variables are                       covariance formula used in statistics which measures how two variables move together                       median average calculation method whereby you sort your data points either ascendingly or descendingly according to their numerical values then you pick either one middle point if your dataset's length LEN modulo division remainder RMD after division through two == zero OR you pick two middle points MDPT_LOW=(LEN/2)-((RMD)/2)-((RMD)/4)*(-((RMD)/4)) AND MDPT_HIGH=(LEN/2)+((RMD)/4)*(-((RMD)/4)) then you calculate their arithmetic mean AMEAN=(MDPT_LOW+(MDPT_HIGH))/len([MDPT_LOW,[MDPT_HIGH]]), where len([MDPT_LOW,[MDPT_HIGH]])=len([[len([[len([[[[[[[[[[[[len([])]]]]]]]]]]])],[len([])]],[len([])]],[len([])]],[len([])]],[len([])]],[len ([])]],[len ([])]],[len ([])]],...,[...],...,[...],...,...,...,...,...,...,...,...,...,...,. ..,. ..,. ..,. ..,. ..,. ..,. . . . . . ])==numberOfMiddlePointsInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==zeroORoneMiddlePointInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==one                      mode average calculation method whereby you sort your data points either ascendingly or descendingly according to their numerical values then you count how often each unique numerical value occurs using collections library's Counter class then you return either one most common element MCE if your dataset's length LEN modulo division remainder RMD after division through two == zero OR you return two most common elements MCEs=[MCE_LOW=(LEN/2)-((RMD)/4)*(-((RMD)/4))-(-(-(-(-(-(-(-(-(-(--(-(-(-(---)))))))))))AND MCE_HIGH=(LEN/2)+((RMD)/4)*(-((RMD)/4)))+(--)]then you calculate their arithmetic mean AMEAN=(AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne]=meanAverageCalculationMethodApp

liedToListOfAllModeValuesInDataset), donde len([MCE_LOW,[MCE_HIGH]])=len([[len([[len([[[[[[[[[[[[len([])]]]]]]]] ]]])],[largo([])]],[largo([])]],[largo([])]],[largo ([])]],[…],…,…, …,…,…,…)==numberOfModeValuesInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==zeroORoneModeValueInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==un método de cálculo de promedio ponderado mediante el cual ordena sus puntos de datos de forma ascendente o descendente de acuerdo con sus valores numéricos y luego multiplica cada valor numérico único por la cantidad de veces que ocurre usando la clase Counter de la biblioteca de colecciones, entonces devuelve uno de los elementos más comunes MCE si la longitud de su conjunto de datos LEN módulo resto de división RMD después de la división a través de dos == cero O devuelve dos elementos más comunes MCEs=[MCE_LOW=(LEN/2)-(( RMD)/4)*(-((RMD)/4))-(-(-(-(-(-(-(–(–(—))))))))AND MCE_HIGH=(LEN/2 )+((RMD)/4)*(-((RMD)/4)))+(–)]luego calcula su media aritmética AMEAN=(AMEAN_(forEachElementInList=[AMEAN_(forEachElementI nList=[AMEAN_(forEachElementInList=[AMEAN_(forEachElementInList=[ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne)]),ameanOfAllElementsExceptForTheFirstAndLastOne]=meanAverageCalculationMethodAppliedToListOfAllWeightedValuesInDataset), where len([MCE_LOW,[MCE_HIGH]])=len([[ largo([[largo([[[[[[[[[[[[largo([])]]]]]]]]]]])],[largo ([])]],[…], …,…,…,…)==numberOfWeightedValuesInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==zeroORoneWeightedValueInDatasetModuloDivisionRemainderAfterDivisionThroughTwo==un método de cálculo del promedio medio geométrico mediante el cual ordena sus puntos de datos de forma ascendente o descendente de acuerdo con sus valores numéricos y luego multiplica todos los valores numéricos únicos usando la clase Counter de la biblioteca de colecciones luego devuelve uno de los elementos más comunes MGE si la longitud de su conjunto de datos LEN módulo resto de división RMD después de la división a través de dos == cero O regresa rn dos elementos más comunes MGES=[MGE_LOW=(LEN/2)-((RMD)/4)*(-((RMD)/4))-1AND MGE_HIGH=(LEN/2)+((RMD)/4 ), donde len(MGES)=número de medias geométricas en el conjunto de datos

Este es un código de Python que crea una nueva columna D en un DataFrame de pandas. La nueva columna D contiene la suma de los valores de la columna A, pero solo si el valor de la columna B es mayor que el valor de la columna C.

sumif

Sumif es una biblioteca de Python para calcular resúmenes de datos. Se puede utilizar para calcular la suma, el promedio, el mínimo, el máximo o el percentil de una lista de valores.

Crear columnas

En Python, puede crear columnas en un marco de datos utilizando la función column(). La sintaxis de column() es la siguiente:

columna (nombre, datos)

donde nombre es el nombre de la columna y datos son los datos que desea poner en esa columna.

Trabajar con datos y columnas.

En Python, puede trabajar con datos en columnas usando la función dict(). Esta función toma como argumento una lista de nombres de columnas y devuelve un objeto de diccionario. Cada clave en este diccionario es un nombre de columna y cada valor es un valor correspondiente del conjunto de datos.

Por ejemplo, para crear un objeto de diccionario que contenga los valores del conjunto de datos "datos" en las columnas "nombre" y "edad", podría usar el siguiente código:

datos = ['nombre', 'edad'] dict (datos)

Artículos Relacionados:

Deja un comentario